Surface chemistry and the quality factor of superconducting radio frequency (SRF) cavities

A. Romanenko

Outline

- SRF cavities
- Cavity quality factor
- Hydrofluoric acid "nanostripping"
- Practical recipe to increase Q₀

Superconducting RF cavities

SRF high beta cavities of different frequencies

Technology of choice for: ILC, Project X, Cornell ERL, CEBAF, XFEL, SNS and many other accelerators

ILC 9-cell elliptical cavity

TM₀₁₀ mode

Why (only) surface matters

Cavity quality factor

Understanding the shape of the Q(H) curve and learning how to control it – main objectives of our research

- Three distinct regions – low, medium, and high field Q-slope
- Respond differently to heat and chemical treatments
- The most dramatic effect high field Q-slope removed by mild baking UHV in situ annealing at 120C for 48 hours

Surface resistance

$$R_s = R_{BCS}(T) + R_{residual}$$

Residual normal electrons

1000 100 100 100 100 100 1.5 K 1.5 K 1.5 K 1.5 K 1.5 K 1.5 K

Bauer- Review of surface resistance models

Known and unknown contributions

$$Q_0 = \frac{\omega U}{P_{diss}} \propto \frac{1}{R_s}$$

To increase Q₀: Minimize all contributions to surface resistance at a required gradient

Need to know what and where in the surface ~40 nm all the contributors are!

Different ways to explore

- 1 Detailed studies of the near-surface material structure (only first ~40 nm matter!) and superconducting properties by relevant state-of-the-art techniques then apply the knowledge to the cavities
 - DOE Early Career Award (A. Romanenko)
- 2 Cavity experiments
 - Perform some new treatment/see what happens
 - Further progress in the detailed surface understanding is crucial – what to do with the surface and why? What do we need to achieve?

Best approach - thermometry and cutout

2/6/12

A. Romanenko - All Experimenters Meeting

Detailed surface studies

- SEM/EDS, XPS
- Laser confocal scanning microscopy
- Elastic Recoil Detection for hydrogen profiling
- Positron annihilation studies vacancy depth profiling
- Electron Backscattered Diffraction dislocation density mapping
- FIB preparation of cross-sectional samples for defect structure observation in TEM and EELS analysis
- Local magnetization using single and arrays of microHall probes
- Magneto optical imaging
- Muon spin rotation
 - Bulk (TRIUMF)
 - Surface (Paul Scherer Institute)

Cavity "HF rinsing" experiments

 Purpose: explore the distribution of losses within the RF layer (~40 nm)

Means:

- Hydrofluoric acid rinsing as a "nanostripping"
 method ~2 nm/step
- Cavity Q(H) measurements after each HF rinse

Hydrofluoric acid rinse – "nanostripping"

Each HF/water rinse step consumes about 2 nm of niobium from the top of the RF layer determining the surface resistance and moves deeper into the bulk – depth profiling of the losses is possible

HF rinse procedure

Results on EP fine grain (tumbled)

- ✓ Single HF rinse after mild baking significantly improves medium field Q0
- Multiple HF rinse cycles do bring the high field Q-slope back
- ✓ Onset field is still higher than before baking by ~25 mT after total 5 HF rinse cycles
 - ✓ Further rinses in queue

Simple higher Q₀ recipe

FNAL single cell data -> single
 HF rinse (5 min) followed by
 water rinse is beneficial for
 the medium field Q value –
 gains of up to 35% measured
 at 70 mT

Possible interpretation

After 120C ~5nm Nb₂O₅ Layer of high residual losses Baking modified no HFQS losses ~20n<mark>m</mark> Bulk susceptible to **HFQS** losses

+HF rinse

- Literature 120C enhances residual resistance; possibly due to suboxide formation
- Single HF rinsing and regrowing oxide – restores residual resistance to pre-bake state while keeping the improvement in R_{BCS}

+5 HF rinses

An estimate of the remaining thickness from the HFQS onset: 125 mT * exp $(-h/\lambda)$ = 100 mT => h^{8} nm

Conclusion

- HF "stripping" studies provide a possible cheap way to raise the Q_0 of niobium cavities
- Recommendation: perform HF rinse as a last step before high pressure water rinsing for cavities targeted for CW projects